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Greechie Diagrams of Small Quantum Logics with
Small State Spaces
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We present Greechie diagrams of various quantum logics with small state spaces
(i.e., the set of two-valued states is empty, not unital, not separating, not full,
resp.). We present the smallest known examples of such so-called Kochen±Specker
type constructions.

1. INTRODUCTION

Quantum logics are usually derived from Hilbert spaces where quantum

propositions form an orthomodular lattice (a quantum logic) of closed sub-

spaces. Since the 3-dimensional Hilbert space R3 is the least Hilbert space

where the situation is nontrivial and since examples in Hilbert spaces with

greater dimensions can be derived from those in R3, we restrict ourselves to R3.
Obviously, the set of states on the quantum logic L(R3) of closed sub-

spaces of R3 is large (full). On the other hand, there is no two-valued state

on L (R3). This is a consequence of the well-known Gleason theorem. While

Gleason’ s theorem uses substantially an infinite number of elements, Kochen

and Specker (1967) showed that this fact follows from a given finite number
of elements (lines).

We are interested in examples of quantum logics representable in L (R3)

with small (empty is a special case of smallness) set of two-valued states.

For a physical background (connection of two-valued states with yes±no

experiments and with the hidden variable hypothesis) in this context see,

e.g., Kochen and Specker (1967), Bub (1996), or Svozil and Tkadlec (1996).
We give examples of quantum logics by means of Greechie diagrams.

While a description of a set of lines by means of points on a cube surface
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(see, e.g., Bub, 1996) gives an insight into which lines are considered, a

Greechie diagram enables better insight into why the set of two-valued states

is small.

2. BASIC NOTIONS AND PROPERTIES

The basic set for our considerations is the set of L(R3) of closed subspaces
of a 3-dimensional Hilbert space. L (R3) consists of a zero subspace, lines,

planes, and of R3 and forms an orthomodular lattice (meet is the intersection,

join is the span of the union, orthocomplement is the set of vectors orthogonal

to all vectors in a given element).

It can be shown (see, e.g., Svozil and Tkadlec, 1996) that there is only

a very limited number of types of finite subortholattices of L (R3). They are
either Boolean algebras (with one, two, or three atoms) or pastings of a finite

number of 3-atomic Boolean algebras for a given atomÐ there is a line

such that all other lines form orthogonal pairs orthogonal to this line (this

corresponds to the 2-dimensional case). These structures are not interesting

for us, hence we will use more general subsetsÐ either sets of lines or

suborthoposets.

Definition 2.1. A nonempty subset L of L (R3) is called a suborthoposet
of L (R3) if :

(1) a ’ 5 {x P R3; x ’ y for every y P a} P L whenever a P L.
(2) a Ú b 5 Sp(a ø b) P L whenever a, b P L with a ’ b.

It can be shown that a suborthoposet of L (R3) forms a lattice. [The

lattice operation need not be the same as in L (R3)Ð the join of a pair of

nonorthogonal elements might be R3 in a suborthoposet, while it is the plane
containing these lines in L (R3).] We say that a suborthoposet L of L (R3) is

generated (orthogenerated , resp.) by a set M , L if every element of L can

be expressed using the elements of M and the operations of join (of orthogonal

elements, resp.) and orthocomplementation. Let us note that if a pair of

orthogonal lines belongs to a suborthoposet of L (R3), then the line orthogonal

to both of them also belongs to this suborthoposet .
A two-valued state on a suborthoposet L of L (R3) is a mapping s: L ª

{0, 1} such that s (R3) 5 1 and s (a Ú b) 5 s (a) 1 s (b) whenever a, b P
L with a ’ b. Let us introduce the notion of a two-valued state also in

another setting.

Definition 2.2. A two-valued state on a set M , L (R3) of lines is a

mapping s: M ª {0, 1} such that:

(1) s (a) 1 s (b) # 1 whenever a, b P M with a ’ b.
(2) s (a) 1 s (b) 1 s (c) 5 1 whenever a, b, c P M are mutually orthogonal.
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Obviously, if s is a two-valued state on a suborthoposet L of L (R3),

then its restriction to a set of lines in L is a two-valued state on this set.

We will use several concepts of ª smallnessº of the set of two-valued
states: emptiness and not ª largeº in some of the following interpretations.

Definition 2.3. A set S of two-valued states on a suborthoposet L of

L(R3) is called:

(1) unital, if for every a P L with a Þ {(0, 0, 0)} there is an s P S
such that s (a) 5 1;

(2) separating, if for every a, b P L with a Þ b there is an s P S such

that s (a) Þ s (b);

(3) full, if for every a, b P L with a ’ ¤ b there is an s P S such that

s (a) 5 s (b) 5 1.

It is well known and easy to see that a full (separating, resp.) set of

two-valued states is separating (unital, resp.). All these notions are studied

in quantum theories. Orthomodular posets with a full (separating, resp.) set

of two-valued states are called concrete logics (partition logics, resp.); see,
e.g., PtaÂk and PulmannovaÂ(1991), Schaller and Svozil (1994).

We will define a unital (separating, full, resp.) set of two-valued states

on a set of lines of L (R3) by the same condition as in the above definition.

[The proper generalization of the notion of a separating set of two-valued

states might be stronger: a unital set such that for every a,b with a Þ b and

a ’ ¤ b there are two-valued states s1, s2 with s1(a) 5 s1(b) and s2(a) Þ s2(b).]
Every suborthoposet of L (R3) can be represented by a Greechie diagram

as follows: We represent atoms (lines in our constructions) by points and

maximal subsets of mutually orthogonal atoms (triadsÐ triples of mutually

orthogonal lines in our constructions) by smooth curves (usually by line

segments) containing corresponding points. We will use `almost’ Greechie
diagramsÐ since each smooth curve connects exactly three points in our

examples, we will omit points which belong to only one curve. This makes

the diagrams a bit simpler.

The Greechie diagram exhibits clearly orthogonality relations. Hence,

it is easy to verify whether a set of lines generates (orthogenerates, resp.) a

suborthoposet of L (R3)Ð we add consecutively points which are connected
by smooth curves with (which belong to the same smooth curve as, resp.) a

pair of points already generated (orthogenerated, resp.). Moreover, we can

easily verify whether a mapping on a set of lines is a two-valued state and

properties of the state space.

3. EXAMPLES

The suborthoposet of L (R3) given by the first diagram in Fig. 1 is

generated by 3 lines (e.g., by those marked by a circle), orthogenera ted by
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Fig. 1 `Almost’ Greechie diagrams of suborthoposets of L(R3) without a full and without

a separating set of two-valued states [e.g., 121 5 Sp(1, ! 2, 2 1)].

6 lines (e.g., by all marked except 101 and 101), contains 13 lines (4 of them

are not drawn in slanted line segments, 1 is not drawn in the vertical line

segment), 7 triads, and an 8-element set of lines [all marked; see, e.g., Kochen

and Specker (1967) for both diagrams] without a full set of two-valued states.
Indeed, if the set of two-valued states is full, then there is a two-valued state

s such that s (210) 5 s (210) 5 1; hence s (121) 5 s (121) 5 s (121) 5 s (121)

5 0 and therefore s (101) 5 s (101) 5 1Ð a contradiction.

The suborthoposet of L (R3) given by the second diagram in Fig. 1 is

generated by 4 lines (e.g., by those marked by a circle), orthogenera ted by

10 lines (e.g., by the same as in the previous example and by 001, 211, 211,
211), and contains 27 lines, 17 triads, and a 17-element set of lines (all

marked except those which are crossed) without a separating set of two-

valued states. Indeed, if s (210) 5 1 for a two-valued state s, then s (001) 5
s (210) 5 0 (we use the fact proven in the previous example) and therefore

s (120) 5 1; due to the symmetry, the reverse implication is also satisfied,

hence s (210) 5 s (120) for every two-valued state s.
The suborthoposet of L (R3) given in Fig. 2 is generated by 3 lines (e.g.,

by those marked by a circle), orthogenerated by 11 lines [e.g., by those

given by SchuÈ tte; see Clavadetscher-Seeberger (1983)Ð the above-mentioned

generators, vertices of the `hexagon,’ 102 and 201], and contains 37 lines,

26 triads, and a 25-element set of lines (all marked) without a unital set of

two-valued states. Indeed, let us suppose that there is a two-valued state on
these lines such that s (100) 5 1 and therefore s (010) 5 s (001) 5 s (011) 5
s (011) 5 0. First, let us suppose that s (102) 5 1: we consecutively obtain

s (211) 5 s (211) 5 0, s (111) 5 s (111) 5 1, s (110) 5 s (110) 5 0 5
s (001)Ð a contradiction. Hence s (201) 5 1 and s (112) 5 s (112) 5 0. Now,
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Fig. 2 `Almost’ Greechie diagram of a suborthoposet of L(R3) without a unital set of

two-valued states [e.g., 121 5 Sp(1, 2, 2 1)].

let us suppose that s (102) 5 1: we obtain s (211) 5 s (211) 5 0, s (111) 5
s (111) 5 1, s (110) 5 s (110) 5 0 5 s (001)Ð a contradiction. Hence

s (201) 5 1 and s (112) 5 s (112) 5 0. Finally, let us suppose that s (110) 5
0: we obtain s (111) 5 s (111) 5 1, s (101) 5 s (101) 5 0 5 s (010)Ð a
contradiction. Hence s (110) 5 0 and we obtain s (111) 5 s (111) 5 1,

s (101) 5 s (101) 5 0 5 s (010)Ð a contradiction.

The suborthoposet of L (R3) given in Fig. 3 is generated by 3 lines (e.g.,

by those marked by a circle), orthogenerated by 17 lines (e.g., by 100, 001,

and by all lines which arise from 012, 112, 112 using permutations of

coordinates), and contains 57 lines, 40 triads, and a 33-element set of lines
[all marked, given by Peres (1991)] without any two-valued state. Indeed, if

there is a two-valued state, then there is a two-valued state s such that s (010)

5 s (121) 5 1 (we use symmetries) and therefore s (100) 5 s (001) 5
s (210) 5 s (012) 5 0. Hence s (120) 5 1, s (211) 5 s (211) 5 0. Let us
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Fig. 3 `Almost’ Greechie diagram of a suborthoposet of L (R3) without any two-valued

state [e.g., 121 5 Sp(1, ! 2, 2 1)].

suppose that s (120) 5 1: we obtain s (211) 5 s (211) 5 0, s (011) 5 s (011) 5
1Ð a contradiction. Hence s (210) 5 1 and we obtain s (121) 5 0, s (121) 5
1, s (012) 5 0, s (021) 5 1, s (112) 5 s (112) 5 0. Since s (021) 5 1, we

obtain s (112) 5 s (112) 5 0, s (110) 5 s (110) 5 1Ð a contradiction.

It should be noted that there is also another example of 33 lines without

any two-valued state by Bub (1996) and an example with 31 lines by Conway
and Kochen (unpublished; see Bub, 1996).
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